
Naïve-Bayes greedy search for representative datasets. 

We denote a subset of datasets whose signals can help us recover the full-stack state annotations 

as the representative set 𝑀∗. We applied a greedy search of datasets to form the representative set 

𝑀∗, i.e. at each iteration, we search for one experiment to add to the representative set 𝑀∗ such 

that the newly modified set of experiments can best recover the original full-stack state 

annotations. The initial representative set is empty. As re-computing chromatin state assignments 

for many different subsets of candidate experiments, M, based on ChromHMM’s normal procedure 

would not be computationally practical, we instead used an approximation of chromatin state 

assignments with a Naïve Bayes approach. First, using the full-stack state annotations and the 

binarized genome-wide signals of 1032 datasets, we define the following properties: 

- The state assignment at each 200bp segment, indexed 𝑖, along the genome is 𝑆𝑖.  
- The prior probabilities of each state 𝑠 is estimated as:  

𝑃(𝑆𝑖 =  𝑠)  =  
# 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑤ℎ𝑒𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 𝑠 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑

# 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑔𝑒𝑛𝑜𝑚𝑒
, for any position 𝑖 

- The conditional probability of a dataset 𝑚 being present (1) in each state 𝑠 is estimated as: 

𝑃(𝑚𝑖 = 1 | 𝑆𝑖 = 𝑠) = 
# 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑤ℎ𝑒𝑟𝑒 𝑚𝑎𝑟𝑘 𝑚 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 𝑠 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 

# 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑤ℎ𝑒𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 𝑠 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 
, for any 

position 𝑖.  
Then, 𝑃(𝑚𝑖 = 0 | 𝑆𝑖 = 𝑠) = 1 −  𝑃(𝑚𝑖 = 1 | 𝑆𝑖 = 𝑠). 

Given we are using a candidate representative set of datasets 𝑀, at each genomic position 𝑖, the 

binarized signals of a potential representative set is denoted 𝑀⃑⃑⃑⃑ 𝑖, and the chromatin state assigned 

here is denoted 𝑆𝑖. We then calculate the posterior probabilities that this position is assigned to a 

particular state 𝑠 as:  

𝑃(𝑆𝑖 = 𝑠 | 𝑀⃑⃑ 𝑖) =   
𝑃(𝑆𝑖 = 𝑠) ×  𝑃(𝑀⃑⃑ 𝑖 |𝑆𝑖 = 𝑠)

𝑃(𝑀⃑⃑ 𝑖)
∝ 𝑃(𝑆𝑖 = 𝑠) × ∏ 𝑃(𝑚𝑖 |𝑆𝑖 = 𝑠)

𝑚∈𝑀
 

Position 𝑖 is assigned to the state with highest posterior probability, i.e. 𝑎𝑟𝑔𝑚𝑎𝑥𝑠 𝑃(𝑆𝑖 = 𝑠 | 𝑀⃑⃑ 𝑖).  

The greedy algorithm we applied to obtained a representative subset of datasets 𝑀∗ is as follows:  

- Step 0: The representative set 𝑀∗ at time 0 is empty: 𝑀0
∗ = ∅. 

- Step 1: For each of the remaining set of datasets, add each one to the current representative 

set separately, and denote each of those sets a candidate set of representative datasets 𝑀. 

- Step 2: Apply Naïve Bayes framework to obtain genome-wide state assignment using the 

candidate representative set 𝑀, denoting such annotation 𝑆𝑀.  

- Step 3: Define the recovery score for each candidate set 𝑀 as:  

𝑅𝑒(𝑀)  =  ∑
# 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑤ℎ𝑒𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 𝑠 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑛 𝑆𝑀

# 𝑝𝑜𝑠𝑡𝑖𝑜𝑛𝑠 𝑤ℎ𝑒𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 𝑠 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛 𝑓𝑢𝑙𝑙−𝑠𝑡𝑎𝑐𝑘 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

100
𝑠=1   

and choose the candidate set with the highest recovery score, i.e. 𝑎𝑟𝑔𝑚𝑎𝑥𝑀 𝑅𝑒(𝑀).  

Repeat steps 1-3 to add one dataset to the representative set 𝑀∗at each iterative.   



Asymptotic worst case time and memory usage of stacked model 

Worst case compute time for each training iteration will grow linearly with the total length 

of the genome sampled per iteration. When the number of input tracks are sufficiently large, the 

worst-case compute time will grow linearly in the number of tracks. More specifically, let M be 

the number of input tracks (in our case, 1032), let N be the number of states (in our case, 100), let 

L be the length of the longest sequence (in our case, 5000, corresponding to one 1M-bp region of 

200bp bins that we divided the genome into), let S be the number of sampled sequences per 

iteration (in our case, 300), and p the number of parallel processors (in our case, 6). For one 

iteration, the worst-case time on total compute usage is: 𝑂(𝑆(𝐿𝑁2 + 𝑀(𝑚𝑖𝑛(𝐿, 2𝑀)𝑁 + 𝐿))). 

This is the case since before running the forward-backward algorithm, ChromHMM pre-computes 

the emission probabilities for each unique combination of observed marks and state in the sample 

sequences (in our case, the 300 regions randomly sampled at each iteration). Determining the 

combination of marks’ signals that each bin corresponds to requires a full pass on the sampled 

data, which is time 𝑂(𝑀𝑆𝐿). The number of observed combinations of marks per sequence is 

bounded by the smaller value between (1) the length of the sequence, L, and (2) the number of 

possible combinations with M inputs, which is 2𝑀. The time to compute the emission probability 

for a single combination of marks for every state is 𝑂(𝑀𝑁) and time 𝑂(𝑆𝑀𝑁 ∗  𝑚𝑖𝑛(𝐿, 2𝑀)) for 

every combination in each iteration (with 𝑆 sample sequences of maximum length 𝐿). With pre-

computed emissions, running the forward and backward algorithm on a sequence of length L takes 

𝑂(𝐿𝑁2) time. This would need to be done on each of the S sampled sequences per iteration, thus 

taking 𝑂(𝑆𝐿𝑁2) total. The update to the emission parameters after running the forward-backward 

algorithm on each sequence 𝑆 can also be done in 𝑂(𝑆𝑀𝑁 ∗  𝑚𝑖𝑛(𝐿, 2𝑀)) time. The default 

number of training iterations, which we used here is 200. 

The worst case wall-time per training iteration is 𝑂(((𝑆(𝐿𝑁2  +  𝑀(𝑚𝑖𝑛(𝐿, 2𝑀)𝑁 +
𝐿)))/𝑝 +  𝑁(𝑀 + 𝑁)𝑆) assuming efficient parallelization. This is the case since the entire 

procedure is parallelized across p processors except for aggregating statistics on the 𝑂(𝑁2) 

transition and 𝑂(𝑁𝑀) emission parameters from each of the 𝑝 processors, which takes 𝑂(𝑁(𝑀 +
𝑁)𝑆) time. 

The worst case memory usage of the procedure is 𝑂(𝑝(𝐿𝑁2  + 𝑀𝑚𝑖𝑛(𝐿, 2𝑀)) +  𝑁(𝑀 +
𝑁)𝑆)  since for each of the 𝑝 sequences being actively processed, the amount of memory to store 

the input is bounded by 𝑂(𝑀𝑚𝑖𝑛(𝐿, 2𝑀) + 𝐿) and the forward-backward procedure needs 𝑂(𝐿𝑁2) 

additional memory.  Additionally, the output for each of the S sequences is stored before they are 

combined requiring 𝑂(𝑁(𝑀 + 𝑁)) storage for each sequence.  

 


